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Experimental studies of the growth of three-dimensional xenon dendrites into a supercooled pure melt are
presented. The shape of the dendrite tip and the origin of sidebranching are investigated. It is found that the
shape in the tip region is not axisymmetric showing a fourfold symmetry. Four fins grow along the dendrite
starting immediately behind the tip. Sidebranches develop at the ridges of these fins. The contour of the fins is
not parabolic and can be described in dimensionless units, i.e., measured in units of the tip radiusR, by a
power lawz5auxub, with a50.5860.04 andb51.6760.05, wherez is oriented along the growth direction of
the dendrite andx is the width of the fins. Selective amplification of thermal noise as well as tip splitting has
been discussed in the literature as possible origins of sidebranching. It is found that xenon dendrites grow in a
stable mode and do not show any temporal oscillations in either the tip velocity or the curvature of the dendrite
tip. Therefore, tip splitting can be excluded as an origin of sidebranching. The distance between the tip and the
first sidebranchz̄SB of a dendrite has been determined.z̄SB is used to estimate the noise strength needed to form
sidebranches as observed in experiments with xenon dendrites. The experimental results, i.e.,b, a, and z̄SB,
have been compared with analytical studies@E. Brener and D. Temkin, Phys. Rev. E51, 351 ~1995!#. Quan-
titative agreement between experiment and theory is found. It is concluded that the formation of sidebranches
is initiated by thermal fluctuations. Dendritic structures may be characterized by parameters that describe the
‘‘integral’’ dendrite. The fractal dimension is an example of such an integral parameter. The averaged fractal
dimensiond̄f of the contour of a dendrite was determined for various supercoolings in the range of 20 mK
<DT<150 mK. The contour is fractal over a range of more than two orders of magnitude in length scale. The
fractal dimension isd̄f51.4260.05 and does not depend on supercooling.@S1063-651X~96!01011-2#

PACS number~s!: 68.70.1w, 64.70.Dv, 81.10.Fq

I. INTRODUCTION

Dendritic growth is one of the most common forms of
solidification observed in nature. Dendrites are crystals that
develop complex, time-dependent shapes. Snowflakes are
well-known examples of dendrites. Dendrites often have
‘‘treelike’’ shapes, as in the case of metal dendrites and of
rare gas dendrites. Figure 1 shows the tip area a xenon den-
drite, as grown in our experiments. Xenon crystallizes in a
fcc structure leading to a nonaxisymmetric dendrite with a
fourfold symmetry. Four fins can be seen to grow along the
dendrites and the sidebranches develop at the ridges of these
fins.

Dendritic solidification is an example for phase transitions
at conditions far from equilibrium. Dendritic growth often
occurs when a material crystallizes from a supercooled melt
or supersaturated solution and the growth is limited by dif-
fusion. For example, dendritic growth is commonly encoun-
tered when metals and alloys freeze under small thermal gra-
dients, as occurs in most casting and welding processes.
Furthermore, in alloys, the details of the dendritic morphol-
ogy is directly related to material properties, such as tough-
ness and corrosion behavior. Although the effects of the ini-
tial dendritic microstructure can be modified by subsequent
heat treatments, the final material properties of alloys are
generally sensitive to the details of the original dendritic mi-
crostructure. Therefore, the understanding and control of
dendritic solidification is of great technological interest.

Dendritic growth is also of theoretical interest as an ar-
chetypical example of a pattern forming system, where a
complex spatial pattern evolves from initially homogeneous
starting conditions. The origin of dendritic shapes and other

nonequilibrium growth patterns has been a long-standing
question. Although the relevant differential equations and
boundary conditions have been known for a long time, the
nonlinearities and instabilities occurring during the solidifi-
cation process have made it difficult to understand even
qualitatively how these shapes arise.

The basic mechanism for the surface instability that leads
to the formation of sidebranches is the following. Assuming
that diffusion controls the solidification process and the
growth rate increases with increasing supercooling. Then the

FIG. 1. Xenon dendrite grown at a supercooling of 123 mK. The
tip is not axisymmetric and four fins start immediately behind the
tip.
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crystal grows along the steepest gradient of the diffusion
field and forms highly ramified structures.

Ultimately, this morphological instability of the solidifi-
cation front is limited by capillary forces, and it is the inter-
play between capillarity and kinetic effects that somehow
produces the complex growth patterns that we see in nature.
For general reviews about dendrites and solidification see,
for example,@1,2#. Even though dendritic growth patterns are
due to a morphological interface instability, they are not
completely random, showing remarkably regular patterns
and deterministic behavior. The big unsolved part of the
problem in dendritic solidification is how these regular den-
dritic patterns are selected. A well-known example for the
occurrence of such regular patterns in dendritic growth are
snowflakes. Although no two snowflakes look alike, all of
them have six regularly spaced sidebranches of equal length.

The so-called velocity-selection problem is an example
for the occurrence of deterministic behavior in dendritic
growth. Many experiments with various substances were
performed@3–5# to measure the tip velocityv tip and the ra-
dius of curvature of the tipR of growing dendrites. It was
found thatv tip andR are uniquely determined by the super-
cooling or the supersaturation. The question how this unique
dynamical operating state of the growing dendrite is selected
has been the topic of intensive research during the past years.

Recently, the velocity-selection problem seems to have
been solved with the development of microscopic solvability
theory. For a review see@6#. But many other questions are
still open. The exact shape of the dendrite tip is among the
topics under discussion. Most theoretical studies assume that
the dendrite tip can be represented by a rotational paraboloid,
but experiments often show that this assumption is not valid
and that the shape is non-axisymmetric deviating consider-
ably from a rotational paraboloid@7–9# ~Fig. 1!. Other ques-
tions under discussion are the dynamics and the origin of
dendritic sidebranching. What is the basic mechanism re-
sponsible for the initiation of sidebranches? Two mecha-
nisms have been discussed, which might induce the forma-
tion of sidebranches: tip splitting, which includes oscillations
in the growth rate, and the amplification of fluctuations at the
sides of the dendrite.

In our studies we focus our considerations on the growth
of three-dimensional xenon dendrites growing into a volume
of pure supercooled melt. The exact shape of the dendrite tip
and the origin of sidebranching are investigated. We have
chosen xenon as a model substance for several reasons. Rare
gases are simple substances amenable to detailed experimen-
tal studies. Rare gases form simple liquids, i.e., liquids that
are composed of spherical atoms or molecules that are
chemically inert. The most typical examples of substances
forming simple liquids apart from rare gases are alkali metals
@10#. Therefore, rare gases can be used as transparent model
substances for metals. Rare gases have a low melting en-
tropy. Therefore, they do not form facets and they are com-
patible with most theoretical models of dendritic solidifica-
tion that assume a rough surface@2#. In Sec. II, a review of
dendritic growth theories is presented with special emphasis
on the results of theoretical models, which will be verified in
our experiments. The setup of our experiment is described in
Sec. III. In Sec. IV, the results of our measurements on xe-
non dendrites are presented and compared with current theo-

ries on dendritic growth. Finally, in Sec. V, these results are
discussed. In our studies we have focused our considerations
on the tip region, i.e., the region without sidebranches close
to the tip. We determined the shape of the tip region of
xenon dendrites with high spatial resolution and found that
the shape deviates considerably from a parabola. In Sec. IV,
experimental evidence is given that xenon dendrites grow in
a stable mode and that thermal noise is the origin of side-
branching. To answer the question about the origin of side-
branching, we have performed measurements of the tip ra-
dius R and the tip velocityv tip to find out whether xenon
dendrites grow in a stable mode or tip oscillations can be
observed. Theoretical models that assume that amplification
of thermal noise is the origin of sidebranching make predic-
tions of the amplification rate, i.e. growth rate, of the initial
fluctations that form the sidebranches later. In the experiment
the amplification rate is not accessible directly, but can be
measured indirectly by measuring the distance between the
tip and the first sidebranchz̄SB, where the first sidebranch
reaches a length of 1R; see Sec IIE. Furthermore, we show
that the fractal dimension is a useful parameter to character-
ize the dendrite, especially in the region far away from the
dendrite tip, where nonlinear interactions between side-
branches are important and coarsening takes place.

II. DENDRITIC SOLIDIFICATION

Most theoretical studies of dendritic growth assume a sta-
tionary growth in a pure supercooled melt of infinite exten-
sion @2,11#. For a pure substance the fundamental mecha-
nism controlling the solidification process is thermal
diffusion. The latent heat that is released during solidification
heats the material in the neighborhood of the solidification
front and must be removed before further solidification can
take place.

The dimensionless thermal diffusion field around the den-
drite is usually chosen to be

u5
T2T`

L/cl
, ~1!

whereT is the local temperature andT` is the temperature
far away from the dendrite. The ratio of the latent heatL to
the specific heat of the liquidcl is used as the unit of super-
cooling. The fieldu satisfies the diffusion equation

]u

]t
5D th¹

2u, ~2!

whereD th5l l /cl is the thermal diffusivity, withl l being the
thermal conductivity.

In the case of a solution, growth is limited by the diffu-
sion of the solute and not by thermal diffusion. Thermal
diffusion can be ignored as it is much faster than the diffu-
sion of the solute. As a result, the concentration of the solute
defines a diffusion field that plays almost exactly the same
role as the thermal diffusion fieldu, with D th replaced by the
diffusion constant of the solute. This leads to a mathematical
description of the problem that is almost identical to the case
of the growth from a pure supercooled melt. Therfore we
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restrict ourselves to the presentation of the theory of den-
dritic solidification from the pure supercooled melt.

Far away from the dendrite the diffusion field isu`50
according to Eq.~1!. At the solidification front, boundary
conditions are given by heat conservation and the local equi-
librium temperature at the interface. The heat conservation
can be written as

Lvn5lsn̂“Ts2l l n̂“Tl , ~3!

wherevn is the normal growth velocity,n̂ is the unit vector
normal to the interface, andl l andls are the thermal con-
ductivities of the liquid and the solid, respectively. The con-
dition of the local equilibrium temperature at the interface
@2# can be written as

u5D2d0k2b~vn!, ~4!

where the first termD is the dimensionless supercooling

D5
DT

L/cl
5
Tm2T`

L/cl
. ~5!

Tm is the equilibrium melting temperature of the plane inter-
face. The second term on the right-hand side of Eq.~4! is the
Gibbs-Thomson correction for the melting temperature at a
curved surface.k is the curvature of the interface and

d05gslclTm /L
2 ~6!

is the capillary length, which is proportional to the surface
free energy of the solid-liquid interfacegsl . The third term
on the right-hand side of Eq.~4! is a kinetic correction.b
describes a departure from local equilibrium at the moving
interface andvn is the velocity of the moving interface nor-
mal to the interface. Kinetic effects and anisotropies of sur-
face properties influenceb and gsl and play an important
role in some recent dendritic growth theories; see Sec. IIC.
The diffusion equation and the moving boundary conditions
lead to a rather complicated, nonlinear and nonlocal integro-
differential equation that cannot be solved directly without
further approximations. Usually, kinetic effects and some-
times even anisotropies of surface properties were neglected
to simplify the problem. In the symmetric model@2#, the
thermal properties of the liquid and the solid are assumed to
be the same. This assumption greatly simplifies some of the
mathematics without losing too many important physical fea-
tures. In the symmetric model the equation of motion can be
written in closed form as

D2
d0
R

k$j~r ,t !%

5p3/2E
0

` dt

~2pt!3/2

3E d2r 8expS 2
p

2t
@ ur2r 8u21~j2j81t!2# D

3~11 j̇8!, ~7!

wherej(r ,t) denotes the instantaneous position of the solidi-
fication front at timet as observed in the frame of reference

moving at the steady-state growth velocity andj8 denotes
j(r 8,t2t). Moreover,p is the so-called Pe´clet number de-
fined in Eq.~11! and the curvaturek$j% is given by

k$j%52“•S “j

@11~“j!2#1/2D . ~8!

Here¹ denotes the two-dimensional gradient. The symmet-
ric model is the starting point for many theoretical studies of
dendritic growth@2#.

A. The Ivantsov solution

The ansatz that the shape of a dendrite can be satisfacto-
rily approximated by a rotational paraboloid was suggested
originally by Papapetrou@12#. An initial analytical approach
to the steady-state dendritic heat flow problem was presented
by Ivantsov@13,14#. Ivantsov neglected the anisotropy, the
Gibbs-Thomson effect, and kinetic effects and found that the
diffusion field around the dendrite can be solved exactly in
axisymmetric parabolic coordinates. Ivantsov’s solution is a
shape-preserving dendrite growing at a constant tip velocity
v tip .

In this approximation the interface of the dendrite has the
form of a rotational paraboloid and is given by the isotherm

u5D. ~9!

In Ivantsov’s solution the supercoolingD is related to the
Péclet numberp

D~p!5pepE
p

`e2y8

y8
dy8, ~10!

with the Péclet number defined as

p5
v tipR
2D th

. ~11!

The physical meaning of the Ivantsov solution has been a
puzzle for many years. On the one hand, it was found in
early experiments that the tips of real dendrites, especially
those formed of materials with relatively low crystalline
anisotropies such as most metals and several organic materi-
als, looked more or less like rotational paraboloids. More-
over, several experiments seemed to indicate that Ivantsov’s
relation Eq.~10! was satisfied@4#. On the other hand, Ivants-
ov’s solution is incomplete insofar as it provides only infor-
mation on the productv tipR, as can be seen in Eq.~11!. This
means that a continuous family of solutions ofR and v tip
is found, whereas, in reality, experiments show a unique
growth velocity v tip and a unique tip radiusR at a given
supercooling. Furthermore, it turned out that Ivantsov’s so-
lution is manifestly unstable against sidebranching@15#.

B. Stability constant s*

Considerable theoretical efforts have been directed to an-
swering the question whether a second equation or length
scale exists, which, combined with the Ivantsov solution,
might select the unique dynamic operating state encountered
in experiments. The introduction of surface tension as an
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additional term in Eq.~9! led to a maximum in thev tip(R)
curve. It was suggested that this maximum velocity may cor-
respond to the dynamical operating state selected by the sys-
tem. But this maximum-velocity hypothesis was disproved
by the experiments with succinonitrile of Glicksman,
Schaefers, and Ayers@16#.

A more successful attempt to find a description of the
operating state is due to Langer and Mu¨ller-Krumbhaar with
the mariginal-stability hypothesis@15#. Langer and Mu¨ller-
Krumbhaar analyzed the stability of parabolic dendrites,
treating surface tension as a linearized perturbation, and
found that the continuum of Ivantsov’s solutions is divided
into a stable and an unstable region. It is assumed that the
dynamical operating state selected by the physical system
corresponds to the point of mariginal stability dividing the
stable and unstable regions. This hypothesis led to an addi-
tional relation betweenv tip andR:

s*5
2D thd0
v tipR

2 . ~12!

s* is usually referred to as the stability, selection, or scaling
constant. For cubic crystals it was found that the value of the
stability constants* can be estimated tos*;0.026, which
is of the same order of magnitude as found in experiments
@11#. In theories it is usually assumed thats* is independent
of supercooling, but asv tipR

2 is proportional to the volume
solidification rate, which should vanish forD→0, s* should
show a dependence on supercooling at least in the limit
D→0.

Experimentally, it is found that the value ofs* varies
from substance to substance and seems to depend on super-
cooling for some substances@3,5,8,17#. It has been found
@7–9# that R is not a well-defined quantity. Therefore the
discussion whether or notv tipR

25const should be discussed
again considering a careful redefinition of the quantityR.

C. Solvability theory

Further development in the theory of dendritic pattern se-
lection was started with the so-called microscopic solvability
theory@6#. The main insight of this theory is that the surface
tension acts as a singular perturbation that imposes a solv-
ability condition on the perturbed steady-state solutions. In
contrast to the Ivantsov solution, only a discrete set of solu-
tions exists and only one of these solutions is dynamically
stable@6,18#. It is found that there are no stable solutions in
the case of isotropic surface tension and that the anisotropy
of the surface free energy is a prerequisite for the existence
of a solution. It is interesting to note that the same stability
constants* found in the theory using the mariginal stability
hypothesis Eq.~12! is the relevant stability parameter again.
This happens because one is looking for a small surface-
tension-induced correction to the shape of the Ivantsov pa-
rabola, and in limit of small Pe´clet numbers, one encounters
an equation quite similar to the one that arises in the mar-
ginal stability hypothesis@11#.

It has been stated@19# that microscopic solvability theory
has definitely resolved the dendritic pattern-selection prob-
lem. However, there are several reasons calling for caution.
First, the underlying set of continuum equations is only an

approximation. The effects of microscopic crystal structure
and growth kinetics are ignored and the effects of noise and
sidebranching are also not included, which may play an im-
portant role at very small supercooling. Second, the present
experiments do not confirm the predicted dependence of
s* (a)}a7/4 on the anisotropy strengtha @20#. This may be
due to the difficulty to obtain experimental values of the
anisotropy sufficiently precise to permit definitive tests of the
theory. Up to the present the microscopic solvability theory
cannot be considered to be confirmed in all parts by experi-
ments.

D. Nonaxisymmetric dendrites

The solvability theory in two dimensions has proven that
an anisotropy of the surface tension is necessary to obtain
stable growth@6#. Commonly, the anisotropy of surface ten-
sion is introduced by allowing the capillary length to depend
on the orientationu. In the case of a fourfold anisotropy, the
capillary length is given by

d0~u!5d̄0@12a cos~4u!#, ~13!

wherea is the anisotropy strength andd̄0 is the averaged
capillary length. A straightforward extrapolation of the two-
dimensional theory to the three-dimensional case is not pos-
sible because the anisotropy of surface tension gives rise to a
nonaxisymmetric shape of the dendrite. This fact compli-
cates the theory of three-dimensional nonaxisymmetric den-
drites considerably. A numerical approach to the three-
dimensional nonaxisymmetric dendrite problem was
presented by Kessler and Levine@21#. Whereas in the two-
dimensional case the solvability condition is associated with
the smoothness of the tip, in the three-dimensional nonaxi-
symmetric case a solvability condition must be satisfied for
each of the azimuthal harmonics@22#. Kessler and Levine
made several approximations and performed a two-mode cal-
culation. The crucial point is that enough degrees of freedom
are found to satisfy all solvability conditions.

The first analytic theory of three-dimensional, nonaxisym-
metric dendritic growth has been developed by Ben Amar
and Brener@22#. The solvability condition for this problem
provides a selection of both the growth velocity and the in-
terface shape. The selected shape for a dendrite with a cubic
anisotropy can be written in cylindrical polar coordinates
(z,r ,f) as

z~r ,f!52
r 2

2
1(

m
Amr

mcos~mf!, ~14!

where all lengths are in units of the tip radiusR. An impor-
tant aspect of Eq.~14! is that the correction terms
rmcos(mf) grow faster than the underlying Ivantsov solu-
tion. Therefore this approximation is valid near the tip only
and further away from the tip strong deviations from the
Ivantsov parabola appear for any nonvanishing anisotropy.
This is in contrast to the two-dimensional case, where for
small anisotropies the selected shape is close to the Ivantsov
parabola everywhere. In the theory of Ben Amar and Brener
the first nonzero term of the shape correction found in the
limit of small anisotropy (a!1) is
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j052r 21
1

11
r 4cos~4f!. ~15!

This formula represents a corrected~zeroth plus first order!
shape for dendrites with cubic symmetry. It is independent of
anisotropy strength. It will be shown in Sec. IVA that this
form can be used to fit the contour of the dendrite tip very
close to the tip~up to 2R away from the tip!. The shape of
the tip over distances of at least 18R from the tip can be
described by a power law, as given in the following para-
graph.

Recently, Brener has developed an analytical solution for
the whole three-dimensional dendritic growth problem. The
construction of the solution involves the existing three-
dimensional selection theory of the dendrite@23# plus a
matching of the tail region to this tip. In the case of a crys-
talline fourfold symmetry it is found that there are four fins
growing at the sides of the dendrite. Close to the tip the
shape can still be described by Eq.~14!, but further away
from the tip, where the shape begins to deviate strongly from
the Ivantsov paraboloid, the shape is described in Cartesian
coordinates (x,y,z) as

y~x,z!5~5uzu/3!2/5S s*

s2*
D 1/5S x

xtip
D 2/3E

x/xtip

1 ds

s2/3A12s4
,

~16!

where the contour of the fins is given by the position of the
top of the fins

xridge~z!5~5uzu/3!3/5~s2* /s* !1/5, ~17!

where the functions2* (a) is given by the two-dimensional
selection theory. The ratios2* (a)/s* (a) is independent of
the anisotropy strengtha in the limit of smalla. Rewriting
Eq. ~17! leads to

z5auxu5/3 ~18!

for the contour of the fins. The dimensionless prefactora is
expected to be of order unity@23#. In Sec. IVA, this result
will be used in a comparision with our experimental data of
the tip shape of xenon dendrites. It is found that the shape is
almost independent of the material and growth parameters
close to the tip Eq.~15! as well as in the region further away
from the tip Eq.~18!, where all lengths are measured in units
of R.

E. Sidebranching

The occurrence of sidebranching in dendritic growth can
in principle be attributed to the so-called Mullins-Sekerka
instability @24#. Mullins and Sekerka showed that a planar
solidification front growing in a supercooled or supersatu-
rated melt is morphologically unstable. The interface is un-
stable against infinitesimal small perturbations if the wave-
length of the perturbationsl is larger than the characteristic
stability lengthls of the system, which is given by

ls52p~d0l !
1/2, ~19!

where l is the macroscopic diffusion length, which is given
by l52D/v for a plane interface advancing with the growth
velocity v. In this theory the basic principles have been de-
veloped to show how an initial, large enough perturbation
grows and develops, as observed in sidebranching of den-
drites. The origin of the initial perturbations that induce the
formation of sidebranches has been a long-standing question.
The theoretical aspects of this question are considered in this
section and experimental results concerning the origin of
sidebranching are presented in Sec. IV.

Two different scenarios that might induce the initial per-
turbations and the formation of sidebranches have been dis-
cussed in the literature. In the first scenario, tip splitting or
dynamical tip oscillations have been proposed as the origin
of sidebranching. In this case it is argued that nonlinear as-
pects of the equation of motion can lead to a stable oscillat-
ing growth mode@25#, which can act as the source of the
sidebranching. Tip splitting has been observed during growth
from solutions in thin cuvettes@26# and is well known to
occur in viscous fingering phenomena. Tip oscillations lead
to a more or less periodic appearance of the sidebranches and
to a correlation between sidebranches growing on opposite
sides of the dendrite. However, in many experiments no such
tip oscillations and no correlation between the sidebranches
are observed.

In the second scenario, sidebranching is assumed to be
driven by selective amplification of noise@27–29#. Numeri-
cal and analytical studies of the two-dimensional boundary
model with both kinetic and surface tension anisotropy@27#
show that a single perturbation of the tip moves away from
the tip with v tip . Therefore, continually generated perturba-
tions are needed for a continuous train of sidebranches. Simi-
lar results have been obtained by numerical and analytical
studies of two-dimensional nonlocal models.

We will show that our experiments allow us to rule out tip
splitting in the case of xenon dendrites growing into a three-
dimensional volume. Therefore, we focus our considerations
on the amplification of noise.

Langer@28# studied the time-dependent behavior of side-
branching deformations for an axisymmetric dendrite in the
three-dimensional symmetric model; see Eq.~7!. The first
step in this analysis is a linearization about the Ivantsov pa-
rabola

z5j~r ,t !52r 2/21j0~r !1j1~r ,t !, ~20!

where bothj0(r ) andj1(r ,t) are small correction terms. The
time-independent functionj0(r ) is a smooth shape correc-
tion due to nonzero surface tension andj1(r ,t) is the time-
dependent perturbation. As usual, lengths are measured in
units ofR and times inR/v tip .

The analysis of the equation of motion in the WKB ap-
proximation lead to the following result: The perturbations
generated near the tip grow in amplitude, stretch, and spread
as they propagate down the dendrite in such a way that they
remain stationary in the laboratory reference frame. In the
linear approximation the amplitude of the perturbations
grows exponentially with the distancez from the dendrite tip
with an exponent proportional to (uzu1/4/s* 1/2). This behav-
ior implies that noise in the solidifying medium is selectively
amplified in such a way that a fluctuating train of side-
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branches is produced, which is in qualitative agreement with
experimental observations. Moreover, Langer studied the re-
sponse to thermal fluctuations in order to test whether ther-
mal fluctuations are strong enough to account for the experi-
mentally observed sidebranching.

An advantage of the symmetric model, in contrast to other
models, such as the boundary-layer model, is that the sym-
metric model is based on a realistic description of the ther-
mal field and there is no difficulty in adding thermal fluctua-
tions. The appropriate procedure for introducing thermal
noise into a system like that is to add a fluctuating heat
sourceS(r ,z,t) to the thermal diffusion equation. The auto-
correlation function of the source term is chosen so that the
known thermodynamic fluctations of the diffusion field are
reproduced. The fluctuation strengthS̄ is given by@28#

S̄25
2kBT

2clD th

L2v tipR
4 . ~21!

kB is the Boltzmann constant. Langer simply repeated the
analysis of the time-dependent behavior of sidebranching de-
formations mentioned above, but now withS̄ added as an
additional stochastic term to the equation of motion@Eq. ~7!#
and obtained

^j1
2~r !&1/2'S̄C̄s* 1/8r 3/8expF23 S 2r

3s* D
1/2G ~22!

for the root-mean-square amplitude^j1
2(r )&1/2 of the side-

branches generated by thermal fluctuations.C̄ is a constant
of order unity.

It is not possible to verify the growth rate of sidebranches
as predicted by Eq.~22! in an experiment directly. Equation
~22! is valid only close to the tip, and in this region the
sidebranches are too small to measure the growth rate di-
rectly. One way to test the predictions of the growth rate of
sidebranches is to ask how far down along the dendrite one
must go in order to find a root-mean-square amplitude of the
sidebranches to be equal to some arbitrarily chosen, visible
fraction of R. For this purpose, we use the mean distance
z̄SB between the tip and the position where sidebranches
have a root-mean-square amplitude of^j1(z)

2&1/2 of about
1R; see Fig. 2.z̄SB can be used as a measure for the growth
rate of sidebranches. The larger the growth rate, the smaller
z̄SB and vice versa. Following the theory of Langer@28#, the
position of the first sidebranch is given by

z̄SB'
s* 2

2 S 32D
6

ln4~S̄C̄! ~23!

for an axisymmetric dendrite in the framework of the sym-
metric model.

By comparing the predictions of Eq.~23! with the experi-
mental results of Huang and Glicksman@4#, Langer found
that thermal noise seems to be too small by 1–2 orders of
magnitude to explain the experimentally observed side-
branching. However, the slow decrease ofz̄SB with increas-
ing supercooling is supposed to be in qualitative agreement
with experimental observations. Langer proposed tip oscilla-
tions as an alternative model to describe sidebranching.

Brener and Temkin extended the analysis of the time-
dependent behavior of sidebranching taking into account
the actual nonaxisymmetric shape of a three-dimensional
dendrite @29#. They used an analytic approach that has
been developed in Ref.@30# and is slightly different from
the above-mentioned approach of Langer@28#. According to
Brener and Temkin, the root-mean-square amplitude
^j1

2(z,y)&1/2 for the sidebranches generated by thermal fluc-
tuations can be written as

^j1
2~z,y!&1/2;S̄expH 2~5/3!9/10

3A3s*
uzu2/5F12

9

4 S 35D 4/5
3~A12 i /921!

y2

uzu4/5G J , ~24!

wherej5x,y,z are the spatial, Cartesian coordinates of the
dendrite andS̄ is the same fluctuation strength as introduced
in Eq. ~21!. The important point in Eq.~24! is that the am-
plitude grows exponentially as a function of (uzu2/5/s* 1/2),
which is faster than in the axisymmetric case@28#, where the
amplitude grows exponentially as a function of
(uzu1/4/s* 1/2). Brener and Temkin argue that the effect that
the growth rate is faster in the nonaxisymmetric case might
resolve the puzzle that experimentally observed sidebranches
have much larger amplitudes than can be explained by ther-
mal noise in the framework of the axisymmetric approach
@28#.

Again z̄SB can be used to test the predicted growth rate of
sidebranches Eq.~24!. In the framework of Brener and
Temkin the positionz̄SB of the first sidebranch is found to be

z̄SB'
~27s* !5/4

25/2~ 5
3 !9/4

u lnC̄S̄u5/2. ~25!

The position of the first sidebranchz̄SB can be measured
directly in dendritic growth experiments and can be used to
test the theoretical predictions of Refs.@28#, @29# @Eqs.~23!
and ~25!#.

FIG. 2. Rotated and translated contour of a xenon dendrite.z is
along the growth direction andx is the width of the dendrite.z̄SB is
the mean distance between the tip and the position where the side-
branches have a root-mean-square amplitude of 1R. R is the radius
of curvature at the tip.
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F. Fractal structure

Far away from the dendrite tip, where the sidebranches
are larger, nonlinear interactions between neighbored side-
branches are becoming important and coarsening takes place.
It is found that, in the region far away from the tip, the
parameters that characterize individual sidebranches, such as
the length or the spacing of sidebranches, do not lead to
reproducible results@7#. This behavior is typical for dynami-
cal chaotic systems. It is found that ‘‘integral’’ parameters,
which describe properties of the integral dendrite, are suit-
able to characterize dendrites as these ‘‘integral’’ parameters
take account of the nonlinear interactions among the differ-
ent sidebranches. Integral parameters are, e.g., the volume or
the surface area or the contour length of a projection of a
dendrite@7#. Another integral parameter is the fractal dimen-
sion df of the dendrite. For a review of fractals and fractal
dimensions see Ref.@31#. There are two widely used meth-
ods to determine the fractal dimension of an experimental
data set, e.g., the box counting method and the ‘‘correlation
dimension’’ method. The ‘‘box counting’’ method can easily
be derived from the definition of the fractal dimension

df5 lim
e→0

lnN~e!

ln~1/e!
, ~26!

whereN(e) is the minimum number of ‘‘boxes’’~squares or
circles in two dimensions! needed to cover the entire fractal
set. e corresponds to the size, e.g., length or diameter, of
these boxes. In physical systems it is not possible to take the
limit e→0, but for smalle the number of boxesN(e) has an
asymptotic behavior of the form

N~e!;
1

edf
. ~27!

Taking the logarithm on both sides of Eq.~27! leads to the
linear relationship

lnN~e!;2df lne, ~28!

which can be used to calculate the fractal dimensiondf . The
fractal dimension calculated in this way is commonly called
box dimension. In practice, the linear relationship of Eq.~28!
holds only over a limited range. The scaling behavior breaks
down for values ofe smaller than the typical minimal dis-
tances of the system such as the pixel size and for values of
e larger than size of the entire system. In the case of the
fractal dimension of xenon dendrites, the scaling range is
limited, on the one hand, by the the tip radius or the pixel
size, depending on magnification, and, on the other hand, by
the overall size of the dendrite.

When computing the box dimension, it is not always easy
to find a minimal covering of the fractal set. There is an
equivalent way to compute the box dimension that avoids
this problem. Instead of looking for a minimal covering of
the set with boxes of sidee, one covers the fractal set with a
square mesh of sidee, i.e., regularly placed, nonoverlapping
boxes of sidee, and determines the the numberN(e) of
these nonoverlapping boxes needed to cover the entire set.
Afterward the fractal dimension is computed as before. Al-
though the covering of the set is not minimal, this method

usually delivers good results. Even with this improvement,
the box dimension has the drawback that its computation
requires much storage space and computing time. Therefore,
box counting is rarely used to calculate the fractal dimension
of large fractal sets. For xenon dendrites, however, box
counting can be used, as the fractal set, i.e., the contour of
the dendrite, is small, consisting only of about 3000–4000
data points.

A second widely used method, which is known as the
correlation dimension method, has been developed by Grass-
berger and Procaccia@32#. The approach relies on correlation
functions and is more efficent than box counting. The corre-
lation functionC(r ) is defined as

C~r !5 lim
m→`

1

m2 (
i , j51

m

H~r2uxW i2xW j u!, ~29!

where r is a radius of a hypersphere in then-dimensional
embedding space,m is the number of points in the fractal set,
and xW i ,xW j are coordinates of points in the set.H is the
Heavyside function defined byH(x)51 for positivex and
0 otherwise. Roughly speaking,C(r ) measures the density
of points within a ‘‘circle’’ with radius r as a function of
r . Grassberger and Procaccia showed that

C~r !;r n, ~30!

or taking the logarithm on both sides

lnC~r !;n lnr , ~31!

wheren is the correlation dimension. This linear relationship
can be used to estimate the fractal dimensionn. It is found
that in generaldf.n, although usuallydf'n @32#. As in the
case of box counting, the linear relationship Eq.~31! holds
only over a limited range and again the range is limited by
the tip radius and the overall dimensions of the dendrite.

Numerical calculations of fractal dimensions are often
difficult and sometimes may lead to inconclusive results,
e.g., if too few data points are available@33#. To obtain a
physically meaningful and reproducible fractal dimension
the scaling range should be more than one order of magni-
tude. Furthermore, one may use more than one method to
calculate the fractal dimension in order to check the results.

Brener, Müller-Krumbhaar, and Temkin proposed a phase
diagram for the selection of growth patterns in diffusional
growth@34#. This classification scheme gives the dependence
of the growth habit on supercooling and anisotropy. It dis-
criminated between fractal structures with fractal dimension
df,d, with d being the dimension of the space where the
experiment takes place, and nonfractal structures, which are
called compact. It is argued that a ‘‘true’’ fractal can occur in
the limit of D50 only, where the correlation length becomes
infinite. In analogy to equilibrium phase transitions this can
be understood as a critical point. ForDÞ0 self-similar frac-
tal properties may still exist over an intermediate range of
length scales. Furthermore, a distinction was made between
dendritic structures with a pronounced orientational order
and structures without an apparent orientational order, which
are called seaweed. It is found that at small anisotropies the
structure is dendritic, whereas the structure becomes compact
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at larger anisotropies. The structure is fractal at small super-
coolings and seaweedlike at larger supercoolings. Therefore,
at small supercoolings and small anisotropies a fractal den-
dritic structure of the growing crystal is expected. For very
large supercoolings the phase diagram breaks down, as in
this region growth is controlled by attachment kinetics.

If one assumes that thermal diffusion or solute diffusion
are the only rate controlling processes in dendritic solidifica-
tion, which is the case for xenon dendrites, then it seems to
be a consequent development to study the dendritic solidifi-
cation in the framework of diffusion-limited aggregation
~DLA ! @31#. DLA structures arise naturally when studying
phenomena such as electrochemical deposition, viscous fin-
gering, chemical dissolution, and the rapid crystallization of
lava @35#. The rule defining DLA is simple, like many mod-
els in statistical mechanics. Random walkers are released
from a large circle surrounding the growing cluster placed at
the origin. When a random walker touches a site at the in-
terface of the cluster, it sticks and the cluster has grown by
one particle. In two dimensions this type of aggregation pro-
cess produces clusters that have a fractal dimension of
df51.71. DLA is very sensitive to noise and anisotropies of
the underlying discrete lattice. Various techniques for noise
reduction and suppression of lattice anisotropies have been
invented@35#. Nittmann and Stanley have studied dendritic
solidification in the framework of DLA and simulated the
growth of two-dimensional dendrites and found patterns that
resemble two-dimensional projections of real dendrites@36#.
A fractal dimension ofdf51.5 was found in the simulations.

Arneodoet al.. studied the statistical properties of two-
dimensional anisotropic diffusion-limited aggregates grown
in a strip @37#. They found an anisotropy induced crossover
from isotropic DLA clusters with a fractal dimension of
df55/3 to dendritic fractal patterns with a fractal dimension
of df53/2.

G. Simulations

During the past years, many computer simulations have
been performed. The nonlinear nature of the equations of
motion in dendritic growth makes analytic studies difficult
and often numerical simulations have proven to be the only
way for further progress. Several models have been used for
simulations: the geometric model@38#, the boundary layer
model @27,39#, or fully nonlinear models@40#. Numerical
simulations were carried out for the fully nonlinear model
and the dependence of the growth velocity on anisotropy was
investigated@41#. Most of these simulations are limited to
two dimensions. This is due to the enormous computing
power needed for these simulations. Even two-dimensional
simulations require often the fastest supercomputers, making
three-dimensional simulations virtually impossible. How-
ever, diffusion in two dimensions is qualitatively different
from diffusion in three dimensions. Because of this it is not
easy, or almost impossible, to compare results of two-
dimensional simulations to experimental results of three-
dimensional dendrites.

Kobayashi nevertheless succeeded in simulating three-
dimensional dendritic growth@42#. The simulations were
performed for various noise and anisotropy strengths. For
certain values of the noise and anisotropy strength the pic-

tures of the simulated dendrites look much like three-
dimensional xenon dendrites. Kobayashi included a sort of
cubic anisotropy and found, as in the case of xenon den-
drites, that four fins grow along the dendrite stem and that
the sidebranches develop at the ridges of these fins. Koba-
yashi used the so-called phase field model. The big advan-
tage of the phase field model, compared to other models, is
that the interface is represented only implicitly. Therefore,
the equations of motion become much simpler, as there are
no more moving boundary conditions. This fact makes it
possible to simulate dendritic growth qualitatively in three
dimensions. The phase fieldp(r ,t), which is an order param-
eter, represents the phase of the solidifying material.
p(r ,t)50 means liquid andp(r ,t)51 means solid, where
r is the position andt the time. The interface of the crystal is
represented inp(r ,t) by the transition layer connecting the
liquid and the solid phase and can be determined by differ-
entiating the phase fieldp(r ,t).

The main problem about the phase field model is the finite
thicknesse of the interface. For quantitative simulations it is
required thate is much smaller than the typical lengths of the
system, i.e.,e!R in dendritic solidification. Quantitative
simulations are not possible at present as small values ofe
demand for a small grid mesh size increasing the computing
time and size of memory needed for the simulations, which
are beyond the capabilities of computers available today.

III. EXPERIMENTAL SETUP

The experimental setup is similar to the one used in pre-
vious experiments with xenon dendrites@7#. For our experi-
ments we have chosen xenon as a model substance. The
choice of pure xenon has several advantages in comparison
to ~i! solute systems and~ii ! the growth of dendrites from
organic materials.

~i! For a pure system the tip radiusR is typically of the
order of 50 mm @3,4#, whereas in solute systemsR is typi-
cally 2 mm @8,43#. The optical resolution is limited by dif-
fraction. The maximum optical resolution that can be
achieved in experimental systems is of the order of the wave-
length of light, which is about 0.5mm in the visible spec-
trum. Thus pure systems can provide data on the shape of the
tip with much higher accuracy than solute systems with com-
parable growth velocities. In addition to that, in solute sys-
tems both concentrations and temperature have to be con-
trolled, whereas in pure systems temperature has to be
controlled only and the homogenization of temperature is
much faster than solute homogenization because of the high
thermal diffusivity.

~ii ! Xenon can be purified easily because rare-gas purifiers
are available, which are used in semiconductor processing.
Finally, xenon does not decompose at the melting tempera-
ture in contrast to many organic materials.

Selected properties of xenon are summarized in Table I.
As far as we know, experimentally determined values of the
solid-liquid interfacial free energygsl of xenon do not exist.
Only a rough estimate can be made if one assumes thatgsl is
proportional to the heat of fusionL per surface atom@44#.
However, the capillary lengthd0, which is an important
length scale in dendritic growth theories, is proportional to
gsl @Eq. ~6!#. Therefore, experimental measurements ofgsl
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and its anisotropy would be important for a further verifica-
tion of dendritic growth theories. For dendritic growth ex-
periments it is essential to have a thermally well controlled
surrounding of the xenon. For this purpose we use a cryostat
as depicted in Fig. 3. Liquid nitrogen can be used for cooling
because xenon has a relatively high melting point compared
to the other rare gases.

The cryostat consists of a double-walled glass vessel,
which is surrounded by liquid nitrogen. The glass vessel is
filled with isopentane as thermostating liquid. We use iso-
pentane as the thermostating liquid because of its large liquid
range ~2159.9° C to127.9° C, at atmospheric pressure!.
The space between the walls of the vessel is filled with he-
lium gas. The gas pressure is used to control the thermal
contact between the isopentane and the liquid nitrogen. The
helium pressure is chosen in such a way that the isopentane
is cooled slightly too much. This cooling is compensated by
counterheating with about 10 W. The temperature stability of
the xenon that can be achieved this way is better than
61024 K during several hours. This temperature stability is
neccessary. For example,v tip can be measured with a preci-
sion of about62%. Asv tip;DT1.745 and typical supercool-
ings are in the range 20 mK<DT<150 mK, the control pa-
rameter, i.e., the supercooling, has been known to about
61%.

The growth vessel is immersed completely in the isopen-
tane and a laminar flow is induced in the isopentane by a
stirrer, providing a homogeneous temperature distribution
around the growth vessel. The volume of the growth vessel is
about 100 cm3. This volume is large enough to be considered
‘‘infinite.’’ This has been verified in earlier studies@3,5#.

Trivedi and Mason@5# have shown that the effect of con-
tainer walls will be negligible forDT.8.531026 K. During
the experiment the growth vessel is filled with pure, liquid
xenon. The temperature of the melt is measured by two
fused-in platinum resistors in the growth vessel and ac mea-
suring techniques.

The experiments are performed at conditions close to the
triple point (Tt5161.3897 K!. Triple points of rare gases are
well defined, they are used as calibration points in thermom-
etry @45#. Special attention is paid to the purity of the xenon.
The xenon gas with a purity of 99.998% was supplied by
Linde. CmHn , CO2, O2, N2, H2, and H2O are extracted by
a rare-gas purifier to 99.9999% prior to every run@46#.
Therefore no disturbance of the dendritic growth by impuri-
ties has to be expected.

At the beginning of the experiment the liquid xenon is
cooled toT` several mK below the melting point and crystal
growth is initiated by the capillary injection technique. A
capillary is inserted from above into the growth vessel~Fig.
4!. At the upper end of this capillary, a seed is nucleated by
cooling with a Peltier element. This seed grows down inside
the capillary. The seed exits the capillary in the middle of the
growth vessel and starts to grow freely, dendritically into the
supercooled melt with the initially homogenous temperature
T` . The main stem of the dendrite grows along the@001#
direction.

The capillary is rotatable. This allows us to orient the
dendrites in such a way that two of the fins are in the object
plane, i.e., the crystallographic@001# axis is oriented along
the optical axis of the optical system. A rotatable capillary is

TABLE I. Selected properties of xenon.

Molecular weight Mm 131.30 g/mol
Triple-point temperature Tt 161.3897 Ka

Triple-point pressure pt 0.816901 barb

Triple-point molar volume (l ) j Vm( l ) 44.31 cm3/molc

Triple-point molar volume (s) j Vm(s) 38.59 cm3/molc

Heat of fusion L 2299 J/mold

Melting entropy DSm 14.24 J/mol K
Jacksona-factor aJackson 1.71 i
Specific heat (l ) cp( l ) 44.6 J/mol Kd

Specific heat (s) cp(s) 36.0 J/mol Kd

Thermal conductivity (l ) l l 0.73431023 W/cm Ke

Thermal conductivity (s) ls 4.7631023 W/cm Ke

Thermal diffusivity (l ) D th( l ) 7.2931024 cm2/s
Thermal diffusivity (s) D th(s) 4.9631023 cm2/s
Refractive index (l ) nl 1.3957 f
Refractive index (s) ns 1.4560 g
Solid-liquid interfacial free energy gsl 1.07331028 J/cm2h

Capillary length d0 4.931028 cm
Unit of supercooling Q 59.2 K

aReference@45#. gReference@57#.
bReference@52#. hEstimate according to Ref.@44#.
cReference@53#. iMaterials witha,2 are usually not faceting in con-
dReference@54#. tact with the melt.
eReference@55#. jl liquid; s, solid
fReference@56#.
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crucial for the determination of the nonaxisymmetric shape
of the dendrite tip.

The optical system consists of an illumination system and
a self-built periscope for the observation of the growing den-
drite. The periscope consists of a system of achromatic lens
pairs. The optical resolution of the periscope is 1mm,
which is close to the theoretical limit. The resolution was
tested by means of a graticule.

The periscope and the illumination system are placed
separately in glass tubes~under helium gas atmosphere! on
opposite sides of the cylindrical growth vessel~Figs. 3 and
4!. Both the periscope and the illumination system are at the
same temperature as the liquid xenon in the growth vessel,
separated from the liquid xenon by optical windows only.
Therefore undisturbed images with high resolution of the
growing dendrite are obtained.

The difference between the refractive indices of liquid
and solid xenon is onlyDnsl50.0589. Because of this small
difference, a special illumination system is needed to obtain
pictures with high contrast. We use an illuminated, diffusive
scattering glass plate that is imaged in a plane behind the

growing dendrite. Monochromactic light improves the con-
trast. Light with a wavelength of 546 nm, for which the
achromats of the periscope were designed, was chosen for
illumination. This illumination leads to highly contrasted
pictures with a dark dendrite and a bright background~Fig.
1!.

The dendrites are imaged on the chip of a charge coupled
device ~CCD! camera, which is interfaced to a commercial
SVHS video recorder with a time code generator. The pic-
tures from the video tape are digitized with a frame grabber
~Matrox!. The frame grabber is working with a resolution of
5123512 pixels, 8-bit gray scale. High optical magnification
has been chosen to provide the resolution of 1mm per pixel
at the digitized pictures. The resulting magnification of the
digitized pictures is calibrated with the outer, known diam-
eter of 0.385 mm of the inserted capillary. However, for the
measurements of the fractal dimension a lower magnification
had to be used to allow the whole dendrite to be imaged on
a picture. Because of the limited number of pixels of the
CCD camera the resolution of the digitized images was lim-
ited to about 10mm per pixel in this case.

In the next step the contour of the dendrites is extracted
from the digitized video pictures. In previous measurements
with xenon dendrites@7# edge detection was performed by
first thresholding the image and then following the contour in
the resulting binary image. This procedure has the disadvan-
tage that an arbitrary value for the threshold has to be chosen
manually. Furthermore, this procedure extracts the contour
correctly for highly contrasted images only. In our analysis
of tip oscillations, where time sequences of several hundred
pictures had to be extracted, it was not feasible to choose a
threshold for every picture manually. Therefore a new, fully
automatic algorithm for contour extraction was developed.

The algorithm works by convolving the image with a La-
placian of a Gaussian. This transformation applies the La-
placian operator and filters the image with a Gaussian at the

FIG. 3. Cryostat. 1, growth vessel; 2, periscope; 3, illumination
system; 4, temperature sensor in the thermostating liquid; 5, stirrer
driven from outside the cryostat; 6, heater; 7, a big mass of stainless
steel to reduce the vibrations of the stirrer~the growth vessel is
fixed independently of the stirrer system!; 8, thermostating liquid:
isopentane; 9, tube to provide a laminar flow of the thermostating
liquid; 10, adjustable vacuum to control cooling power; 11, liquid
nitrogen.

FIG. 4. Growth vessel. 1, liquid xenon; 2, rotatable capillary; 3,
upper end of capillary where nucleation occurs; 4, Peltier element
for cooling; 5, fused-in platinum resistor~temperature sensor!; 6,
periscope; 7, illumination system; 8, mirror; 9, helium atmosphere.
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same time@47#. The filtering of the image with a Gaussian is
necessary as the Laplacian operator is very sensitive to noise
in the intensity of the image. Now the edge points can be
marked as the zero crossings of the Laplacian, i.e., the
points where the Laplacian switches from positive to nega-
tive values and vice versa. This algorithm guarantees that
closed and only one-pixel-wide contours of the dendrites are
detected in a robust way. The drawback of this algorithm is
that convolving the image with a Laplacian of a Gaussian is
computationally very demanding, but with a fast workstation
this problem can be solved. The edge detection was per-
formed on asilicon graphicsworkstation. Taking about 10
min per image, the whole time sequence of images could be
extracted in a batch mode overnight. Afterward, the extracted
contour data have been analyzed with mathematical standard
software packages such asMAPLE andMATHEMATICA .

IV. EXPERIMENTAL RESULTS

A. Tip shape

Xenon crystallizes in a fcc structure leading to a nonaxi-
symmetric dendrite with fourfold symmetry. Even the tip
region is not axisymmetric. Four fins grow along the den-
drite, starting immediately behind the tip. The sidebranches
grow at the ridges of these fins~Fig. 1!.

In agreement with earlier studies with pure melt@7# and
experiments with crystallization from a solution@8#, we find
that the contour of the dendrite, even in the tip region, does
not have a parabolic shape~Fig. 5!. In all our experiments we
orient the dendrites in such a way that two of the fins are in
the object plane, i.e., the crystallographic@001# axis is ori-
ented along the optical axis of the periscope. There is a fun-
damental difficulty in quantifying the dendrite tip shapes. In
order to obtain the radius of curvature at the tip, it is neces-
sary to use data points obtained from regions of the contour
away from the very tip. Fitting the contour of the dendrite tip
by a simple parabola for the calculation of the tip radius
leads to a dependence of the tip radius on the fitting height
H. H is the distance from the tip, along thez axis, up to
which data points of the contour are included for fitting. It is

found that the larger theH the smaller the fitted curvature,
i.e., R increases with increasingH. In order to obtain a well-
defined reproducible value for the tip radius, one has to de-
fine some kind of averaging. Considering only a small por-
tion very close to the tip, one uses only very little data points
of the contour, therefore one obtains large statistical errors.
Averaging over a larger range of the dendrite tip means the
inclusion of many data points that do not approximate well
the parabola fit at the very tip. Dougherty and Gollub@8#
have fitted over an arbitrary length of the dendrite of
H53R. This is a possible compromise. Using a parabola for
fitting, Hürlimann et al. @7# have determined the tip radius
R as a function of the fitting heightH for various values of
H. A linear dependence of the tip radius onH was found.
Hürlimann et al. extrapolated the tip radius forH→0, ob-
taining a well-defined limiting tip radiusRtip in this way,

lim
H→0

R~H !5Rtip . ~32!

In experiments with xenon dendrites@7# the dependence of
Rtip on supercooling is found to be

Rtip5~5.260.4!3DT20.8360.03, ~33!

whereRtip is measured in micrometers andDT in degrees
kelvin. It is interesting to note thatv tipRtip

2 5const in the case
of the limiting tip radiusRtip .

For a better approximation of the tip shape, we have tried
to fit several low-order polynomials of the form

z5(
i50

n

aix
i , ~34!

with n in the range 3–7.z is measured along the growth
direction andx is the width of the dendrite; see Fig. 2. Fits
with polynomials of order higher thann57 have proven to
be numerically unstable. We have found that a low-order
polynomial can approximate the shape of the dendrite in the
tip region much better than a simple parabola fit@48,49#.
However, the tip radiusR calculated by means of polynomial
fits still shows a dependence on the fitting heightH used for
fitting. The dependence on the fitting heightH is much
smaller than in the case of a parabola fit, but nevertheless it
cannot be neglected. The tip radiusR of the polynomial fits
was calculated using the formula of the radius of curvature in
two dimensions, which is given by

R5
1

k
5

@11 f 8~x!2#3/2

f 9~x!
. ~35!

Furthermore, the calculated tip radiusR shows a dependence
on the order of the polynomial used for fitting and no order
of the polynomials can be found that fits the contour best,
i.e., has the smallest standard deviation or the smallest, or
no, dependence ofR on the fitting heightH. This makes it
even more diffcult to determine a tip radius in a well-defined
reproducible way. Based on these experimental results we
conclude that the shape of the contour in the tip region can-
not be described accurately by a parabola or a low-order
polynomial.

FIG. 5. Data of the contour of a dendrite in the tip region are
compared with a power-law fit withb51.67. The size of the
squares is much larger than the error of the measurements. The
plotted parabola demonstrates that the shape deviates considerably
from the parabola.H indicates the fitting height.
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As an alternative we tried to fit the contour by a power
law of the form

z5auxub. ~36!

A power-law fit can be seen as a generalization of the simple
parabola fit, coinciding forb52 with the parabola fit. The
main advantage of the power law fit is that there are only two
fitting parametersa andb, whereas polynomial fits of order
n have n11 fitting parameters. Polynomial fits introduce
many additional fitting parameters and the physical meanings
of these parameters are not obvious. For the power-law fit
the physical meanings of the two parametersa and b are
known and theoretical predictions exist@23#.

Using images with high resolution (1mm per pixel!, we
performed this power-law fit for several dendrites grown at
various supercoolings in the range 20 mK<DT<150 mK
and found that the contour in the tip region can be approxi-
mated much better with the power-law fit than with a pa-
rabola or a low-order polynomial fit. An exponent of
b51.6760.05 is found for all dendrites independent of su-
percooling@50#. Figure 5 shows the contour of a xenon den-
drite in the tip region as found in our experiments. The
power-law fit withb51.67 is plotted in this figure. The pa-
rabola plotted in Fig. 5 demonstrates that the shape of the
contour deviates considerably from a parabola forH.2R.
The standard deviation of the power-law fit is only 1.5
mm, which is close to the resolution of the image data
(;1mm!. In contrast to the parabola or polynomial fits the
power-law fit does not depend on the fitting heightH. This
can be seen from the fact that the power-law fit approximates
the contour beyond the range used for fitting. In Fig. 5 con-
tour points up to a fitting height of 250mm are used for the
fit. A power-law fit matches the contour beyond that region
at least toH518R within the precision of the measurements.
The fit starts to deviate from the contour in the region where
the first sidebranches appear. The value ofb51.67 of the
fitted contour of the fins is in good agreement with the ana-
lytical studies of Brener and Temkin presented in Sec. IID.
Brener and Temkin predict that the contour of the fins of
nonaxisymmetric dendrites with cubic symmetry can be de-
scribed by a power law Eq.~18! with b55/3.

Moreover, we use our data to test the prediction that even
for nonaxisymmetric dendrites very close to the tip
(H,2R) a parabolic, axisymmetric tip shape is still pre-
served@21,22#. Very close to the tip the contour extraction is
less precise64mm because of the reduced sharpness of the
images in this region that is due to the larger thermal gradi-
ents around the tip that disturb the imaging process. Figure 6
shows the data of the contour of a xenon dendrite in the
region very close to the tip (H,2R). A power-law fit with
b51.67 and a parabola fit are plotted together with a fit as
proposed by Ben Amar and Brener, which is a parabolic fit
with an additional correction term due to anisotropy Eq.~15!.

All three fits match the contour data within experimental
errors. Therefore, very close to the tip the shape of the con-
tour can be approximated by a parabola and a radius of cur-
vatureRtip can be determined in this limited region in a re-
producible way. However, statistical errors become
significant, as only a small number of data points can be used
in the determination ofRtip . Our data are compatible with

the prediction that close to the tip the shape remains para-
bolic, but because of the limited resolution of our images, we
are not able to distinguish between the three fits~Fig. 6! and
it cannot be decided whether the shape is really parabolic or
if the power-law fit is valid up to the very tip point.

The prefactora characterizes the tip just like the tip ra-
dius R, but the prefactora can be determined with much
higher precision thanR, as the determination of the prefactor
a is not restricted to a limited region of the dendrite as it is
the case forR. Therefore, we use the prefactora instead of
R in the discussion about tip oscillations. However, for com-
parison with theories we had to use the more traditional tip
radiusR.

For the determination of the prefactor, we usedz5auxub
with b51.67 fixed. Fitting both parametersb and the pre-
factor a simultaneously is not possible as they are coupled
nonlinearly, which makes the fit very sensitive to the errors
in the data points and the fit becomes unstable. In Fig. 7 the
prefactora is plotted vs the dimensionless supercoolingD. If
z andx are measured in units ofR, the prefactor is dimen-
sionless and we find thata50.5860.04 is constant indepen-
dent of supercooling. This experimental result is again in
agreement with the theoretical predictions of Brener and
Temkin @29#, where a dimensionless prefactor of order unity
is predicted, independent of supercooling and anisotropy in
the limit of small anisotropy.

B. Tip oscillations

Tip splitting and dynamical tip oscillations have been pro-
posed as the origin of sidebranching~see Sec. II E!. If such
tip oscillations exist, oscillations in the tip velocityv tip and
in the tip radiusR during growth have to be expected. In
order to decide whether sidebranches are initiated by oscil-
latory growth, we have determined time sequences of the
prefactora(t) and the tip velocityv tip during times compa-
rable to the time it takes the tip of the dendrite to grow by
about 100R.

FIG. 6. Data of the contour (h) of a dendrite very close to the
tip (H,2R) are compared with a power-law fit, a parabolic fit, and
a parabolic fit with an additional correction term due to anisotropy.
All three fits match the contour within experimental error and it
cannot be distinguished between the three fits. The error bar in the
inset shows the average error of64mm of the contour points.
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For the determination of the prefactora(t), only the tip
region of the growing dendrite, i.e., the region without side-
branches close to the tip, was imaged on the chip of a CCD
camera that was moved with a constant calibrated velocity to
follow the dendrite tip. The image field of our optics is much
larger than the size of the CCD chip. High optical magnifi-
cation was chosen to provide the resolution of 1mm on the
video pictures. In regular intervals images of the growing
dendrite were digitized and the contour of the tip was ex-
tracted from each image. In the next step the extracted con-
tour was transformed by a rotation and a translation in such
a way that the tip point coincided with the origin and the
fourfold symmetry axis of the dendrite was oriented along
thez axis of the frame of reference~Fig. 2!. After the trans-
formation, the power lawz5a(t)uxub, with b51.67, was
fitted to the contour to determine the prefactora(t). Figure 8
shows the prefactora(t) vs time for a dendrite grown at a
supercooling ofDT5116.3 mK. We have performed this
procedure for long measuring times with a sampling interval
of 2 s. Data for short time scales with a sampling interval of

0.2 s are shown in the smaller inset plot in Fig. 8. In both
cases the prefactora(t) is constant in time within the preci-
sion of our measurements (62%), showing no oscillatory
behavior. Therefore, no tip oscillations can be observed on a
time scale ranging from 0.2 s to several minutes. The mean
value of the data in the plot isa50.55260.002.

To check our results we have performed the same mea-
surements but used the tip radiusR instead of the prefactor
a for the characterization of the tip. A sixth-order polynom
was used to determineR(t). Again we find thatR(t) is con-
stant in time within63%. The larger error ofR(t) is a
consequence of the fact that the prefactora(t) can be deter-
mined with a higher precision thanR(t).

The measurement ofv tip(t) was performed in a slightly
different way compared to the measurement ofa(t). A mov-
ing camera would have interfered with the velocity measure-
ments. Therefore, the CCD camera was held fixed in the
laboratory frame of reference and the velocity of the dendrite
was measured, while the dendrite grew through the field of
view of the camera. However, a camera with a fixed position
has a drawback. When the dendrite tip is about to leave the
field of view of the CCD camera, the camera has to be
moved to reposition the dendrite tip in the center of the im-
age. During repositioning of the camera, no tip velocity mea-
surements can be performed. A parabola with a fitting height
H52R was fitted to the tip to determine the coordinates of
the tip point. A parabola fit is sufficient as in the very tip
region no noticeable difference to the other fits is found. The
sampling rate is limited by the spatial resolution of the CCD
camera, i.e. the minimum time between two successive im-
ages is given by the time it takes the dendrite to move across
one pixel. The tip velocityv tip was determined by measuring
the displacement of the tip over time intervals where the tip
grows about 10mm. Shorter time intervals would lead to
significant statistical errors inv tip . In Fig. 9 v tip vs time is
plotted for a dendrite grown at a supercooling of 141.6 mK.
The tip velocity is constant in time within63%, indicating
stable growth. The mean value isv tip56.4860.18mm/s. The
gaps in the data points in Fig. 9 are due to the periodic
repositioning of the camera.

We conclude that xenon dendrites grow in a stable mode.
The dendrite tip does not show any indication of an oscilla-

FIG. 7. Dimensionless prefactora vs the dimensionless super-
cooling D. a is independent of supercooling. The mean value is
a50.5860.04.

FIG. 8. Dimensionless prefactora vs time for a dendrite grown
at DT5116.3 mK. The sampling interval is 2 s for the large plot
and 0.2 s for the smaller inset plot.

FIG. 9. Instantaneous tip velocityv tip vs time for a dendrite
grown at DT5141.6 mK. v tip56.4860.18mm/s is constant in
time, indicating stable growth.
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tory behavior in the prefactora or v tip within the precision of
our measurements. Therefore, tip oscillations can be ex-
cluded as the origin of sidebranching.

C. Sidebranching

A possibility to test whether sidebranching is driven by
selective amplification of thermal noise is to measure the
mean distance between the tip and the position where the
sidebranches have a root-mean-square amplitude^j1(z)

2&1/2

of about 1R ~Fig. 2; see Sec. II E!. This mean distancez̄SB
for a specific dendrite was obtained by extracting several
contours of the dendrite at different growth times and by
averaging the positions of all contours. We measured the
mean distancez̄SB at various supercoolings in the range 20
mK<DT<150 mK. Figure 10 shows the position of the first
sidebranchz̄SB in units ofR as measured in our experiments
with xenon dendrites vs the dimensionless supercoolingD.
z̄SB does not depend on supercooling and the mean value is
z̄SB517.563. We compare these data with theoretical pre-
dictions of ~i! Langer and~ii ! Brener.

~i! Following the theory of Langer, the position of the first
sidebranch is given by Eq.~23! for an axisymmetric dendrite.
For small Pe´clet numbers (p!1), the dimensionless noise
strengthS̄ introduced in Sec. II E can be written in the form
@28#

S̄5S TT0Ds* 3/2p, ~37!

where

T05S L2d03kBcl
D 1/2. ~38!

All parameters in Eqs.~37! and ~38! are experimentally
known and can be used to calculatez̄SB. Using Table I we
obtainT5Tm5161 K andT05151 K. Moreover, the stabil-
ity constants*'0.02 and the Pe´clet number

p5~7.461.4!31021D1.06060.028 ~39!

were measured in previous experiments with xenon dendrites
@3,7#. The only undetermined value is the constantC̄. The
theoretical value ofC̄ is of order unity. We setC̄51 and
obtain from Eq.~23!

z̄SB'0.002 28u ln~0.0022D1.06!u4 ~40!

for the position of the first sidebranch as a function of the
supercooling. In Fig. 10 the dashed line showsz̄SB calculated
according to Eq.~40!. The mean value ofz̄SB of about 70 is
much too large, i.e., the growth rate of the sidebranches pre-
dicted by the Langer is much too small to explain the experi-
mentally observed sidebranching (z̄SB518) and we would
have to setC̄;50 to find agreement with the experiment.
However, settingC̄;50 is not permissible asC̄ is assumed
to be of order unity. The result, that the growth rate predicted
by Eq. ~40! is much too small to explain the observed side-
branching, is in agreement with an earlier estimate of Langer
@28#. Langer mentions that values ofC̄ in the range
1012102 would be necessary to make it consistent with ex-
perimental data of succinonitrile. Langer concluded that ther-
mal fluctuations are not strong enough to produce the side-
branches.

~ii ! However, for a nonaxisymmetric dendrite the ampli-
fication rate can be much larger. As mentioned in Sec. II E,
Brener and Temkin@23# have found that the amplitude of
fluctuations grows exponentially as a function of
(uzu2/5/s* 1/2), which is much faster than the growth of the
amplitude of fluctuations as it is expected from the axisym-
metric theory of Langer@28#, namely, exponentially as a
function of (uzu1/4/s* 1/2). The important point is that in the
theory of Brener, the amplification rate is calculated for a
nonaxisymmetric dendrite with four fins and a contour of the
fins of z5auxu5/3. As xenon dendrites do have exactly this
kind of shape~Sec. IVA!, this theory seems well applicable
to the case of three-dimensional xenon dendrites.

Using Eq.~25! for the position of the first sidebranch in
the nonaxisymmetric case, with the same values and the
same fluctuation strength as above andC̄51, we obtain

z̄SB'0.0261u ln~0.0022D1.06!u5/2 ~41!

for the position of the first sidebranch as a function of super-
cooling. As can be seen in Fig. 10~solid line!, we find good
agreement between this calculation and our data within ex-
perimental error. The dependence ofz̄SB on supercooling, as
predicted by the above-mentioned theories of Langer and
Brener, cannot be verified with our data because our mea-
surement of the position of the first sidebranch is not precise
enough.

Our measurement ofz̄SB shows quantitative agreement
with the analytic work of Brener and Temkin@29# for a non-
axisymmetric dendrite with cubic symmetry. Therefore we
conclude that thermal noise initiates the formation of side-
branches.

FIG. 10. Position of the first sidebranchz̄SB in units ofR vs the
dimensionless supercoolingD. z̄SB is constant and the mean value is
z̄SB51863. The dashed line showsz̄SB according to the theory of
Langer, Eq.~40!. The solid line showsz̄SB as expected from the
theory of Brener, Eq.~41!.
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D. Fractal dimension

We determined the fractal dimension of the contour of the
area of projection of a xenon dendrite@51#. In the first step,
the contour of the dendrite was extracted from a digitized
image and afterward box counting was used to calculate the
fractal dimension. To simplify the algorithm the contour was
covered with a square mesh of sidee, wheree was chosen to
be e52n3(pixel size), with n50, . . . ,9 for a 5123512
pixel image. Figure 11 shows lnN(e) plotted versus lne for a
xenon dendrite grown at a supercooling ofDT561.1 mK.

The data points can be approximated by a straight line and
the slope of the linear fit is21.4460.03 with a correlation
coefficent of 0.998. The data point for the smallest box size
e has been ignored in the fit, ase is of order of the tip radius
R for this data point, which is at the theoretical limit of the
scaling range. Although the linear fit is not perfect, we find
that the contour is fractal over a range of more than two
orders of magnitude in length scale and more than three or-
ders of magnitude in the number of ‘‘boxes’’ scale. The frac-
tal dimension isdf'1.4 according to Eq.~28!. The scaling
range is limited at the lower end by the radius of curvature,
which is the typical length of the smallest structures of a
dendrite, and at the upper end by the overall size of the
dendrite.

To verifiy our results we also used the correlation method
developed by Grassberger and Procaccia~Sec. II F!. Figure
12 shows a plot of lnC(r) versus lnr. C(r ) has been calcu-
lated for the contour of a xenon dendrite. The data points are
on a straight line, which means again that the contour is
fractal over a range of more than two orders of magnitude in
length scale. The slope of the linear fit corresponds to the
‘‘correlation dimension’’ n51.48860.004. The correlation
coefficient of the linear fit is 0.9996. The fact that both meth-
ods lead, within the errors of the data, to the same results
strongly indicates that the contour is indeed fractal over a
range of more than two orders of magnitude in length scale.
Using both methods, we have calculated the fractal dimen-
sion at different times during the growth of a xenon dendrite.
We find that after a short transient time at the beginning,
when the dendrite starts growing out of the capillary, the
fractal dimension is constant in time, i.e., there is no time
dependence of the fractal dimension during growth. To mini-

mize the statistical errors, we calculated the fractal dimen-
sion at several ‘‘ages’’ of a specific dendrite and then aver-
aged in order to get the averaged fractal dimensionsd̄f and
n̄ for a given supercooling. Figure 13 showsd̄f andn̄ calcu-
lated for various supercoolings. The results of both methods
are shown together.

From these experimental results we conclude that the
fractal dimension does not depend on supercooling. Both
methods lead to the same results within the errors of the data.
However, the correlation method seems to give systemati-
cally slightly higher values. We do not understand why this
happens. Theory would requiren̄<d̄f . We suppose that this
disagreement might be an effect of a systematic error in the
algorithm. Averaging over data obtained at various super-
coolings leads tod̄f51.4260.05 ~box dimension! and n̄
51.5160.08 ~correlation dimension!. The dendrites can be
considered to be self-similar. At a given temperature the
length scale is changed in all dimensions in the same way.
Dendrites grown at various temperatures are self-similar;
they scale withR.

FIG. 11. Number of ‘‘boxes’’N(e) vs the length scalee of the
boxes. The slope of the linear fit is21.4460.03.

FIG. 12. Correlation functionC(r ) vs the length scaler . The
slope of the linear fit isn51.48860.004.

FIG. 13. Averaged box dimensiond̄f51.4260.05 ~h! and the
averaged correlation dimensionn̄51.5160.08 ~s! vs the super-
cooling of the melt. The error bar in the inset shows the average
error of the data points.
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V. DISCUSSION

A. Tip shape

Up to now most theoretical studies on dendritic growth
assume an axisymmetric, parabolic tip of the dendrite, based
on the famous Ivantsov solution@13#. However, it is known
from experiments@3,7,8# since many years that the tip shape
deviates from a parabola, but it was commonly assumed that
this deviation may be neglected. Our results show that the
deviation from a parabolic shape is significant and that it is
essential to take into account the nonparabolic, nonaxisym-
metric tip shape to understand three-dimensional dendritic
growth.

La Combeet al. @9# investigated the tip region of pure,
three-dimensional succinonitrile dendrites. Using a parabola
fit, a dependence of the tip radiusR on the fitting heightH
was found, similar to the one reported by Hu¨rlimann et al.
@7#. It was concluded that this dependence is due to the non-
parabolic shape of the tip and a fourth-order polynomial was
used for a more accurate determination of the tip radius.

In contrast to La Combeet al., we find that the shape of
the dendrite tip cannot be approximated accurately by a low-
order polynomial and we use a power-law fit instead. The
power-law fit matches the contour within the resolution of
our data (61mm) and there is no dependence of the fit on
the fitting heightH. Highly contrasted images with high
resolution were used to extract the contour of the tip. There-
fore, we conclude that the contour of the fins has the shape
z5auxub, with a50.5860.04 andb51.6760.05. The val-
uesa andb have been predicted by Brener and Temkin@29#
and therefore the physical meanings of these parameters are
known, whereas in the case of a polynomial fit of degree
n, the physical meanings of the (n11) fitting parameters are
unknown.

However, the problem with a nonparabolic dendrite tip is
that the tip radius is not a well-defined quantity anymore. For
a tip with a power-law shape withbÞ2, the curvature, and
therefore the tip radiusR, becomes singular at the tip point
(x50). This is a serious problem as the tip radius is the
important length scale in dendritic growth. The prefactora
used in the previous sections, which was made dimensionless
by measuring all lengths in units ofR, cannot be used to
define a length. We propose to use the unscaled and
temperature-dependent prefactorã(D) to define a new length
Ra , which might be used in place of the traditional tip radius
R. ã(D) has the dimension of~length!22/3. Ra can be defined
as

Ra~D!5ã~D!23/2, ~42!

Ra andR are of the same order of magnitude and have the
same temperature dependence. The similarity betweenR and
Ra is a consequence of the fact that the dimensionless pre-
factor a is constant and independent of supercooling~Sec.
IVA ! if all lengths are scaled by the tip radiusR(D). The
notationR(D) indicates that the tip radius depends on super-
cooling. The shape of the contour in the tip region can be
written as@see Eq.~18!#

S z̃

R~D! D5aS x̃

R~D! D
5/3

, ~43!

where x̃ and z̃ are the unscaled coordinates as measured in
the experiment. A simple rearrangement leads to

z̃5aS R

R5/3D x̃5/3 ~44!

and the unscaled prefactorã(D) is given to be

ã~D!5aR22/3. ~45!

This leads to

Ra~D!5ã~D!23/25a23/2R~D! ~46!

for the scaling behavior ofRa(D). Therfore,Ra andR pro-
vide the same physical information and are related by the
proportionality constanta23/2'2.4, independent of super-
cooling.

B. Sidebranching

We find quantitative agreement of our experimental data
of z̄SB with the theoretical predictions of Brener and Temkin
@29#. As far as we know, the theory of Brener and Temkin
@29# is the first analytic treatment of a nonaxisymmetric den-
drite in three dimensions for a material with cubic symmetry.
This theory describes the formation of four fins along the
dendrite, as observed in our experiments with xenon den-
drites.

In a further test of the theory of Brener and Temkin one
might compare the predictions ofz̄SB with experimental re-
sults obtained from dendrites grown from other substances to
check whether the theory predicts the dependence ofz̄SB of
the material properties and noise strength in the right way.
To perform a comparison with the theory of Brener and
Temkin similar to the one with xenon dendrites, we used the
experimental data for three-dimensional succinonitrile den-
drites obtained by La Combeet al. @9#. We estimate from
Fig. 7 of Ref. @9# that the position where the first side-
branches have a root-mean-square amplitude of 1R is about
300mm. The dendrite was grown at a supercooling of 0.46
K. At this supercooling, the tip radius is 25.7mm and we get
z̄SB511.563. With the properties of succinonitrile
Tm5331 K, T051280 K, C̄51, s;0.02, andp5531023

and using Eq.~25!, we obtainz̄SB514.5 for the position of
the first sidebranch measured in units ofR. This is compat-
ible with the theory of Brener. We cannot perform a quanti-
tative comparison between experiment and theory as we did
it for xenon because we have only one single data point for
succinonitrile and our estimate ofz̄SB is not very precise.
Although succinonitrile and xenon have rather different ma-
terial properties, Brener’s theory describes correctly the side-
branching behavior for both substances. This result suggests
that Brener’s theory describes correctly the sidebranching
behavior of dendrites for any pure substance with cubic sym-
metry.

C. Fractal dimension

The result that sidebranching is initiated by thermal noise
is consistent with the observation that sidebranches on oppo-
site sides of the dendrite are not correlated. The spatial Fou-
rier transform of the shape of the dendrite has a broad con-
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tinuous background, which is typical for a dynamical chaotic
system. Integral parameters, such as the fractal dimension,
have proven to be useful for the characterization of such
dynamical, chaotic systems.

The value 1.4 for the fractal dimension of xenon dendrites
is not compatible with the fractal dimensiondf51.71, which
is found in two-dimensional, isotropic DLA. The reason for
this discrepancy may be that two-dimensional, isotropic
DLA is too simplistic to describe three-dimensional dendritic
solidification. The fractal dimension of 1.4 is in approximate
agreement with the two-dimensional simulations of dendritic
growth of Nittmann and Stanley@36# ~Sec. II F!, which pre-
dict a fractal dimension of 1.5, and the two-dimensional,
anisotropic DLA simulations of Arneodoet al. @37#, which
predict a fractal dimension ofdf53/2 for dendritic growth
patterns. However, these results should not be overestimated
as in these simulations two-dimensional volume fractals are
calculated, whereas in the case of xenon dendrites we studied
the contour of the projection of a three-dimensional dendrite
and it is not clear how the contour is related to the two-
dimensional volume. Our results are in agreement with the
predictions of the phase diagram proposed by Brener,
Müller-Krumbhaar, and Temkin@34# ~Sec. II F! for the se-
lection of growth patterns in diffusional growth. They predict
fractal growth patterns for crystals with small anisotropy
growing at small supercoolings. This is in agreement with
xenon dendrites that are found to be fractal. Xenon has only
a small anisotropy, as it is a very simple, monoatomic sub-
stance with van der Waals forces only. Furthermore, all xe-
non dendrites in our experiments are grown at very small
supercoolings. Larger supercoolings are not possible because
of heterogeneous nucleation of crystals at the walls of the
growth vessel. Therefore, it is not possible to verify the pre-
dicted crossover@34# from fractal structures at small super-
coolings to seaweedlike structures at larger supercoolings.

VI. SUMMARY

Anisotropic surface properties lead for the xenon den-
drites to a nonaxisymmetric shape with fourfold symmetry.
Four fins grow along the main stem of the dendrite, starting
immediately behind the tip. The contour of these fins is not
parabolic and can be described by a power lawz5auxub,
with a50.5860.04 andb51.6760.05 independent of su-
percooling. This result is in excellent agreement with the
analytical work of Breneret al. @22,23,29#, which predicts a

contour ofz;uxu5/3 for a three-dimensional nonaxisymmetric
dendrite with cubic symmetry. Only very near the tip
(H,2R) the contour can be approximated by a parabola fit
and forH→0 the experimental data are in agreement with
v tipR

25const.
We have determined the tip velocityv tip(t) and the di-

mensionless prefactora(t) as a function of time. In both
casesv tip(t) and the prefactora(t) are constant in time,
showing no oscillatory behavior within the resolution of ex-
perimental data. The dendrite grows in a stable mode. Thus
tip oscillations can be excluded from being the origin of
sidebranching. Our determination of the position of the first
sidebranchz̄SB shows quantitative agreement with the ana-
lytic work of Brener Temkin@29# for a nonaxisymmetric
dendrite with cubic symmetry. Therefore we conclude that
thermal noise initiates the formation of sidebranches.

Further away from the dendrite tip, where the side-
branches are becoming larger, many fewer theories and ex-
perimental data are available. In this region nonlinear inter-
actions among different sidebranches are important and
coarsening takes place. We find that integral parameters such
as the volume, the surface area, and the contour length of the
projection, which were determined in earlier measurements
with xenon dendrites@7#, are good parameters to describe the
whole dendrite. The fractal dimension is another integral pa-
rameter. We find that the contour of a xenon dendrite is
fractal over more than two orders of magnitude of length
scale and has a fractal dimensiond̄f51.4260.05. Both box
counting and correlation method lead to the same results
within the errors of the data.d̄f is independent of supercool-
ing. The fact that xenon dendrites are fractal is in agreement
with the predictions of the phase diagram of Breneret al.
@34# for the selection of growth patterns in diffusional
growth, where fractal growth patterns are predicted for
crystals with small anisotropy grown at small supercoolings.
Thus we conclude that integral parameters are good
parameters for the characterization of dendritic solidification.
It may be that integral parameters can be used in other
structure-forming phenomena.
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